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ABSTRACT

We combine weak lensing measurements from the Red-Sequence Cluster Survey (RCS) and the VIRMOS-
DESCART survey and present the first direct measurements of the bias parameter b and the galaxy-mass
cross-correlation coefficient r on scales ranging from 0.2 to 9:3 h�1

50 Mpc (which correspond to aperture radii
of 1<5 450) at a lens redshift z ’ 0:35. We find strong evidence that both b and r change with scale for our
sample of lens galaxies (19:5 < RC < 21), which have luminosities around L�. For the currently favored cos-
mology ð�m ¼ 0:3; �� ¼ 0:7Þ, we find b ¼ 0:71þ0:06

�0:04 (68% confidence) on a scale of 1 2 h�1
50 Mpc, increasing

to�1 on larger scales. The value of r has only minimal dependence on the assumed cosmology. The variation
of r with scale is very similar to that of b and reaches a minimum value of r � 0:57þ0:08

�0:07 (at 1 h
�1
50 Mpc; 68%

confidence). This suggests significant stochastic biasing and/or nonlinear biasing. On scales larger than
� 4 h�1

50 Mpc, the value of r is consistent with a value of r ¼ 1. In addition, we use RCS data alone to measure
the ratio b=r on scale ranging from 0.15 to 12:5 h�1

50 Mpc (10 600) and find that the ratio varies somewhat with
scale. We obtain an average value of b=r ¼ 1:090� 0:035, in good agreement with previous estimates. A
(future) careful comparison of our results with models of galaxy formation can provide unique constraints,
as r is linked intimately to the details of galaxy formation.

Subject headings: cosmology: observations — dark matter — gravitational lensing

1. INTRODUCTION

The growth of structures in the universe via gravitational
instability is an important ingredient in our understanding
of galaxy formation. However, the connection to observa-
tions is not straightforward, as we need to understand the
relation between the dark matter distribution and the gal-
axies themselves. Galaxy formation is a complex process,
and it is not guaranteed a priori that this relation, referred
to as galaxy biasing, is a simple one. The bias might be non-
linear, scale dependent, or stochastic. In the simplest case,
linear deterministic biasing, the relation between the dark
matter and the galaxies can be characterized by a single
number, b (Kaiser 1987).

Most observational constraints of biasing come from
dynamical studies (see Strauss & Willick 1995) which probe
relatively large scales (10 h�1

50 Mpc or more). Recent esti-
mates on these scales suggest values of b � 1 for L� galaxies
(e.g., Peacock et al. 2001; Verde et al. 2001). On smaller
scales, some constraints come from measurements of the
galaxy two-point correlation function, which is compared
to the (dark) matter correlation function computed from
numerical simulations. These studies indicate that the bias
parameter b ’ 0:7 on scales less than � 2 h�1

50 Mpc
ð�m ¼ 0:3; �� ¼ 0:7Þ. On larger scales, b increases to a
value close to unity (Jenkins et al. 1998).

Although this procedure provides useful information
about the bias parameter b as a function of scale, it does rely
on the assumptions made in the numerical simulations. In
addition, it cannot be used to examine the tightness of the
correlation between the matter and light distribution. To
determine that, we need to measure the galaxy-mass cross-
correlation coefficient r, which is a measure of the amount
of stochastic and nonlinear biasing (e.g., Pen 1998; Dekel &
Lahav 1999; Somerville et al. 2001).

The coherent distortions in the shapes of distant galaxies
caused by weak gravitational lensing provide a unique way
to study the dark matter distribution in the universe. Weak
lensing probes the dark matter distribution directly, regard-
less of the light distribution. In addition, it provides meas-
urements on scales from the quasi-linear to the nonlinear
regime, where comparisons between observations and pre-
dictions are still limited. Much progress has been made in
recent years, and the latest results give accurate joint con-
straints on the matter density �m and the normalization of
the power spectrum �8 (e.g., Bacon et al. 2002; Hoekstra et
al. 2002b; Refregier, Rhodes, & Groth 2002; van Waerbeke
et al. 2002).

Although redshift surveys can be used to determine the
relative values of b and r for different galaxy types (Tegmark
& Bromley 1999; Blanton 2000), weak gravitational lensing
provides the only direct way to measure the galaxy-mass
cross-correlation function (Fischer et al. 2000; Wilson, Kai-
ser, & Luppino 2001; McKay et al. 2001; Hoekstra, Yee, &
Gladders 2001b). Fischer et al. (2000) used the Sloan Digital
Sky Survey commissioning data to measure the galaxy-mass
correlation function, and their results suggested an average
value of b=r � 1 on submegaparsec scales. This approach
has been explored by Guzik & Seljak (2001), who used semi-
analytic models of galaxy formation combined withN-body
simulations. Their results suggest that the cross-correlation
coefficient is close to unity. The galaxies used in their analy-
sis, however, are massive (and consequently luminous)
because of the limited mass resolution of the simulations.
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In this paper, we use the method proposed by Schneider
(1998) and van Waerbeke (1998), which allows us to meas-
ure the biasing parameters directly as a function of scale.
Hoekstra, Yee, & Gladders (2001a) applied this technique
to 16 deg2 of RC-band imaging data from the Red-Sequence
Cluster Survey (RCS; e.g., Yee & Gladders 2001) and mea-
sured the ratio b=r as a function of scale. They found an
average value of b=r ¼ 1:05þ0:12

�0:10 for a �CDM cosmology on
scales ranging from 150 h�1

50 kpc to 3 h�1
50 Mpc.

However, an accurate measurement of the mass autocor-
relation function is required to constrain b and r separately.
Furthermore, the analysis is facilitated if the measurements
of both the galaxy autocorrelation function and the mass
autocorrelation function probe the power spectrum at the
same redshift. To this end, the measurements presented by
van Waerbeke et al. (2002), based on deep imaging data
from the VIRMOS-DESCART survey, are ideal. In this
paper, we combine the results of the RCS and the VIR-
MOS-DESCART survey, allowing us to measure both b
and r as a function of scale for the first time.

The structure of the paper is as follows. In x 2, we discuss
the data sets we use for our analysis. In x 3, we define the
bias parameters and show how they can be related to
observed correlation functions. The relevant correlation
functions are discussed in x 4. The actual measurements are
discussed in x 5. The inferred bias parameters are presented
in x 6. In the Appendix, we demonstrate that the method
used in this paper gives accurate results if the bias parame-
ters vary with scale and redshift.

2. DATA

The Red-Sequence Cluster Survey7 is a galaxy cluster sur-
vey designed to provide a large number of clusters with
0:1 < z < 1:4 (Yee & Gladders 2001). Here we use the RC-
band data from the northern half of the survey, which con-
sists of 10 widely separated patches on the sky, observed
with the CFH12k camera on the Canada-France-Hawaii
Telescope (CFHT). The total area observed is 45.5 deg2, but
because of masking, the effective area is somewhat smaller,
with a total of 42 deg2 used in the lensing analysis. The data
and weak lensing analysis are described in detail in Hoek-
stra et al. (2002a).

The VIRMOS-DESCART survey8 consists of four
patches in four colors also observed with the CFHT12k
camera. The final survey will cover 16 deg2, but here we use
8.5 deg2 of I-band data described in van Waerbeke et al.
(2001).

These data have been used elsewhere to derive joint con-
straints on �m and �8 using the weak lensing signal caused
by large-scale structure (Hoekstra et al. 2002a, 2002b; Pen
et al. 2002; van Waerbeke et al. 2001, 2002). These papers
describe in detail the object detection, the shape measure-
ments, and the corrections for the various observational
distortions (point-spread function anisotropy, seeing, and
camera shear). These studies have shown that the contami-
nation of the lensing signal by residual systematics is small.

The accuracy of the measurement of the galaxy autocor-
relation function increases with survey area, and hence the

RCS data are best suited for this measurement. Currently,
the VIRMOS-DESCART survey provides the most accu-
rate measurement of the mass autocorrelation function (in
particular, on scales less than 100), although the RCS data
also provide useful constraints on cosmological parameters
(Hoekstra et al. 2002b). On scales less than 100, the accuracy
of the RCS measurements is likely limited by intrinsic align-
ments of the sources, whereas the VIRMOS-DESCART
measurements do not suffer from this. For the galaxy-mass
cross-correlation function, we use the results from the RCS
because the lenses used for the determination of the galaxy
autocorrelation function were selected from this survey.

Currently, we do not have redshift information for the
RCS galaxies, and we, therefore, select a sample of lenses on
the basis of their apparent RC-band magnitude: we define a
sample of lenses from the RCS with 19:5 < RC < 21, which
yields a total of � 1:2� 105 lenses. For the measurement of
the galaxy-mass cross-correlation function, we use source
galaxies with 21:5 < RC < 24, which yield� 1:5� 106 sour-
ces. The weak lensing analysis of the VIRMOS-DESCART
data uses� 5� 105 galaxies with IAB < 24:5.

In order to interpret the measurements, we have to know
the redshift distributions of the lens galaxies and the two
populations of source galaxies. The CNOC2 Field Galaxy
Redshift Survey (Yee et al. 2000) has determined the red-
shift distribution of galaxies down to a nominal limit of
RC ¼ 21:5. Hence, the results from CNOC2 provide an
excellent measure of the redshift distribution of our sample
of lenses ð19:5 < RC < 21Þ, for which we obtain a median
redshift of z ¼ 0:35.

The source galaxies from the RCS and the VIRMOS-
DESCART surveys have different redshift distributions,
and these galaxies are generally too faint for spectroscopic
surveys. Fortunately, photometric redshifts work well, as
demonstrated by Hoekstra, Franx, & Kuijken (2000). We
use photometric redshift distributions derived from both
Hubble Deep Fields (Fernández-Soto, Lanzetta, & Yahil
1999) andmulticolor observations done with the Very Large
Telescope (vanWaerbeke et al. 2002). We find amedian red-
shift of z ¼ 0:53 for the RCS source galaxies (with
21:5 < RC < 24). The galaxies from the VIRMOS-DES-
CART survey are fainter, and the selection of galaxies with
IAB < 24:5 gives a median redshift of z ’ 0:9. Although the
source redshift distributions are quite different, we will show
below that the two surveys are actually well matched, as
both probe the power spectrum at z � 0:35 (see Fig. 1).

3. METHOD

To study the galaxy biasing, we use a combination of the
galaxy and mass autocorrelation functions as well as the
cross-correlation function. The statistic we use to present
the results is the aperture mass, Map, which is described in
detail in Schneider et al. (1998). It is defined as (Kaiser et al.
1994)

Mapð�Þ ¼
Z

d2�Uð�Þ�ð�Þ ; ð1Þ

where � is the dimensionless surface density. ProvidedUð�Þ
is a compensated filter, i.e.,

R
d��Uð�Þ ¼ 0, with Uð�Þ ¼ 0

for � > �, the aperture mass can be expressed in term of the
observable tangential shear �t using a different filter func-

7 Go to http://www.astro.utoronto.ca/~gladders/RCS.
8 Go to http://www.astrsp-mrs.fr/virmos/ and http://terapix.iap.fr/

Descart/.
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tionQð�Þ [which is a function ofUð�Þ],

Mapð�Þ ¼
Z �

0

d2�Qð�Þ�tð�Þ : ð2Þ

We use the filter function suggested by Schneider et al.
(1998),

Uð�Þ ¼ 9

��2ap
1� �

�ap

� �2
" #

1

3
� �

�ap

� �2
" #

; ð3Þ

with the correspondingQð�Þ,

Qð�Þ ¼ 6

��2ap

�

�ap

� �2

1� �

�ap

� �2
" #

: ð4Þ

A common definition of the ‘‘ bias ’’ parameter is the ratio
of the variances of the galaxy and dark matter densities,
which is the definition we will use here. In the case of deter-
ministic, linear biasing, the galaxy density contrast �g is sim-
ply related to the mass density contrast � as �g ¼ b� (Kaiser
1987), and the ratio of the variances is the only relevant
parameter. The galaxy number density contrast Dng is then

given by

Dngð�Þ ¼
Nð�Þ � �NN

�NN
¼ b

Z
dw pf ðwÞ�½ fKðwÞ�;w� ; ð5Þ

where �NN is the average number density of lens galaxies, w is
the comoving distance, fKðwÞ is the comoving angular diam-
eter distance, and where pf ðwÞdw corresponds to the redshift
distribution of lens galaxies.

Then the aperture count,N, is given by (Schneider 1998)

Nð�apÞ ¼
Z

d2�Uð�ÞDngð�Þ : ð6Þ

With our choice of the filter function Uð�Þ, we can write
the autocorrelation ofN as

hN2ð�apÞi ¼ 2�b2
Z

dwh1ðw; �apÞ ð7Þ

(Schneider 1998; van Waerbeke 1998; Hoekstra et al.
2001a), where h1ðw; �apÞ is defined as

h1ðw; �apÞ ¼
pf ðwÞ
fKðwÞ

� �2
Pfilterðw; �apÞ ; ð8Þ

and where the ‘‘ filtered ’’ power spectrum Pfilterðw; �apÞ is
given by

Pfilterðw; �apÞ ¼
Z

dl lP3d
l

fKðwÞ
;w

� �
J2ðl�apÞ ð9Þ

(Schneider et al. 1998).
Here P3d is the time-evolving, three-dimensional power

spectrum. As has been shown by Jain & Seljak (1997), it is
important to use the nonlinear power spectrum in the calcu-
lations, and in the following, we use the results from Pea-
cock &Dodds (1996). The filter function Jð�Þ is given by

Jð�Þ ¼ 12

��2
J4ð�Þ ; ð10Þ

where J4ðxÞ is the fourth-order Bessel function of the first
kind.

The power spectrum P3d contains a wealth of information
about the cosmological parameters. A measurement of
hN2i could be a powerful tool, provided the value of b is
known. Unfortunately, the latter is not the case. This is why
weak lensing by large-scale structure (‘‘ cosmic shear ’’) has
become an important cosmological tool: it probes the (dark)
matter power spectrum directly, without having to rely on
the light distribution.

The matter autocorrelation function hMapi2 is related to
the power spectrum as

hM2
apð�apÞi ¼

9�

2

H0

c

� �4

�2
m

Z
dwh2ðw; �apÞ ð11Þ

(Schneider et al. 1998), where �m is the density parameter,
and h2ðw; �apÞ is given by

h2ðw; �apÞ ¼
gðwÞ
aðwÞ

� �2
Pfilterðw; �apÞ ; ð12Þ

where aðwÞ is the cosmic expansion factor. The function

Fig. 1.—Different integrands of the integrals in eqs. (14) and (17) for a
fiducial aperture size �ap ¼ 50. The integrands have been normalized to have
the same maximum value. Thick solid line: h1ðwÞ as a function of w. Upper
axis: Corresponding redshift. We used the observed redshift distribution of
galaxies with 19:5 < RC < 21 from the CNOC2 survey, which gives rise to
the wiggles in the function. This result indicates that we probe the power
spectrum (and the bias parameters) at an effective redshift �0.35. Thick
dashed line: h2ðwÞ for the VIRMOS-DESCART survey. This function is
rather broad, which reflects the fact that weak lensing probes the power
spectrum over a relatively large redshift range. However, comparison with
the integrand for the galaxy autocorrelation function shows that both peak
at the same redshift. Hence, we can use the ratio of hN2i and hM2

api mea-
sured at the same aperture size �ap. The same integrand using the RCS
background galaxy redshift distribution gives the thin dashed line, which is
a poor match to galaxy autocorrelation function.Dotted line: Integrand for
the galaxy-mass cross-correlation function, h3ðwÞ, which overlaps well with
the galaxy autocorrelation function.

606 HOEKSTRA ET AL. Vol. 577



gðwÞ is given by

gðwÞ ¼
Z wH

w

dw0pbðw0Þ fKðw
0 � wÞ

fKðw0Þ ð13Þ

and depends on the redshift distribution of the (back-
ground) sources pbðwÞdw. It measures the ‘‘ lensing
strength ’’ of a lens at a distance w. If the lens is close to the
sources, the lensing signal decreases, whereas a large dis-
tance between the lens and the sources results in a larger sig-
nal. Hence, gðwÞ declines with increasing w, reaching a value
of 1 for w ¼ 0 and a value of 0 for lenses behind the sources.

We use equations (7) and (11) to relate the bias parameter
b to the cosmology and measurements, and obtain

b2 ¼ 9

4

H0

c

� �2 R
dwh2ðw; �apÞR
dwh1ðw; �apÞ

� �
�2

m � hN2ð�apÞi
hM2

apð�apÞi

¼ f1ð�ap;�m;��Þ � �2
m � hN2ð�apÞi

hM2
apð�apÞi

: ð14Þ

The value of f1 depends on the assumed cosmological
model and the redshift distributions of the lenses and the
sources. Hence, for a given cosmology, the bias parameter b
can be determined from the observed ratio of the galaxy and
matter autocorrelation functions. Calculations of f1 as a
function of aperture size show that it depends minimally on
the aperture size and the adopted power spectrum.

The bias relation is likely to be more complicated than
the simple case of linear deterministic biasing: the actual
relation depends on the process of galaxy formation, and
might be stochastic, nonlinear, or both. Hence, there is no
reason that b is constant with scale, but as we demonstrate
in the Appendix, we can still use equation (12) as long as b
varies slowly with scale. Another complication is that b is
likely to depend on redshift, and consequently, the derived
value for b is a redshift-averaged value for the lenses in our
sample.

If the bias parameter depends on redshift and scale, it is
important that both the galaxy and matter autocorrelation
functions probe the power spectrum at the same ‘‘ effective ’’
redshift. In addition, the interpretation is facilitated if the
measurements probe a relatively small range in redshift. To
examine this in more detail, it is useful to plot the h1ðw; �apÞ
and h2ðw; �apÞ as a function of w.

The results are presented in Figure 1. The integrands have
been normalized to a peak value of unity. The thick solid
line shows h1ðw; �apÞ as a function of w for a fiducial
�ap ¼ 50. We used the observed redshift distribution of gal-
axies with 19:5 < RC < 21 from the CNOC2 survey, which
gives rise to the wiggles in the function. This result indicates
that we probe the power spectrum at an effective redshift
�0.35. The thick dashed line shows h2ðw; �apÞ for the VIR-
MOS-DESCART survey. This function is rather broad,
which reflects the fact that weak lensing probes the power
spectrum over a relatively large redshift range. However,
comparison with the integrand for the galaxy autocorrela-
tion function shows that both peak at the same redshift.
Hence, we can use the ratio of hN2i and hM2

apimeasured at
the same aperture size �ap.

The lensing is maximal when the lens is halfway between
the source and the observer. Hence, the weight function
h2ðwÞ reaches its peak value approximately halfway
between the observer and the source. Compared to the

background galaxies from the VIRMOS-DESCART sur-
vey, the RCS sources are at lower redshift, and conse-
quently, the latter will probe the power spectrum at a lower
redshift. This is indicated by the thin dashed line in Figure
1, which shows h2ðw; �apÞ using the RCS background galaxy
redshift distribution. It is a poor match to the galaxy auto-
correlation function. We therefore use the mass autocorre-
lation function measured from the VIRMOS-DESCART
survey.

So far, we have only used the autocorrelation functions.
We can, however, also measure the galaxy-mass cross-
correlation function hNMapi, which can be used to quan-
tify how well the mass distribution correlates with the light
distribution.

The galaxy-mass cross-correlation function hNMapi is
related to the power spectrum as

hMapð�apÞNð�apÞi ¼ 3�
H0

c

� �2

�mbr�
Z
dw h3ðw; �apÞ ð15Þ

(Schneider 1998; van Waerbeke 1998; Hoekstra et al.
2001a), where h3ðw; �apÞ is defined as

h3ðw; �apÞ ¼
pf ðwÞgðwÞ
aðwÞfKðwÞ

Pfilterðw; �apÞ : ð16Þ

The parameter r in equation (15) is the galaxy-mass cross-
correlation coefficient (Pen 1998; Dekel & Lahav 1999;
Somerville et al. 2001), which is a measure of nonlinear sto-
chastic biasing. In the case of deterministic linear biasing,
r ¼ 1.

The redshift distributions of the lenses and the sources
used to measure the galaxy-mass cross-correlation func-
tion partly overlap. A source in front of a lens contributes
no signal and therefore lowers the lensing signal. The over-
lap of the redshift distributions is naturally taken into
account by equation (15). To prove this statement, we first
consider a sheet of lenses at a distance !f . The ‘‘ lensing
strength ’’ for these lenses is given by gðwf Þ, to which only
background galaxies with ! > !f contribute. The larger
the !f , the lower both the observed and predicted lensing
signals will be (and they are lower by the same factor).
Hence, equation (15) gives the correct result for a sheet of
lenses at a given redshift. The actual redshift distribution
of lenses can be considered a superposition of many sheets
at different redshifts, and consequently, equation (15) is
correct for any combination of lens and source redshift
distributions.

The combination of equations (7), (11), and (15) relates
the value of r to the observed correlation functions and the
cosmology and is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dwh1ðw; �apÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dwh2ðw; �apÞ

pR
dwh3ðw; �apÞ

� hMapNi
hM2

api
1=2hN2i1=2

¼ f2ð�ap;�m;��Þ �
hMapð�apÞNð�apÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2ð�apÞihM2

apð�apÞi
q : ð17Þ

Similar to f1, the value of f2 depends minimally on �ap and
the assumed power spectrum (vanWaerbeke 1998).

The integrand h3ðw; �apÞ of the integral in equation (15) is
also shown in Figure 1, and it matches the results for the gal-
axy autocorrelation function well. As for the bias parameter
b, the value of r can depend on scale and redshift. However,
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because of the properties of the aperture statistics described
in the Appendix, we can measure the scale dependence of r
directly from equation (17). As for b, the inferred value for r
is a redshift-averaged value for the lenses in our sample.

Our definitions of b and r are chosen such that they can be
related directly to the observed correlation functions. How-
ever, both b and the cross-correlation coefficient r mix non-
linear and stochastic effects (Dekel & Lahav 1999;
Somerville et al. 2001), which we currently cannot disentan-
gle with weak lensing.

Dekel & Lahav (1999) defined a combination of three
parameters (~bb, b̂b, and �b) that separate nonlinear and sto-
chastic biasing. They parametrize the stochasticity by the
parameter �b, the local biasing scatter. The nonlinear bias-
ing is characterized by the ratio ~bb=b̂b, where b̂b is the slope of
the linear regression of �g on � (i.e., the natural generaliza-
tion of the linear biasing parameter).

From lensing, we can only measure combinations of these
parameters. We can, however, relate the observables b and r
to the parameters from Dekel & Lahav (1999) in the two
limiting cases. If we assume that the bias is purely nonlinear
and deterministic (i.e., �b ¼ 0), we obtain ~bb ¼ b and
~bb=b̂b ¼ 1=r. Hence, the inverse of the cross-correlation coeffi-
cient measures the amount of nonlinear biasing. Likewise,
in the case of linear and stochastic biasing (i.e., ~bb ¼ b̂b), we
obtain �b ¼ b 1� r2ð Þ1=2.

4. DETERMINATION OF THE
CORRELATION FUNCTIONS

A straightforward implementation of the method
described above is to tile the survey area with apertures and
compute hMapNið�Þ and hN2ið�Þ directly from the data.
To do so, one can use the estimators (Schneider 1998)

~MMap ¼ ��2ap

PNb

i¼1 Qð�iÞwi�t;iPNb

i¼1 wi

; ~NN ¼ 1
�NN

XNf

i¼1

Uð�iÞ ;

whereNf andNb are the number of lens and source galaxies,
respectively, found in the aperture of radius �ap, �NN is the
average number density of lenses, and �t;i is the observed
tangential shear of the ith background galaxy. The weights
wi correspond to the inverse square of the uncertainty in the
shear measurement (Hoekstra et al. 2000).

However, this procedure has the disadvantage that it
assumes a contiguous data set; i.e., there are no holes in the
data. In real data, regions that are contaminated by bright
stars, bad columns, etc., have to be masked. Although the
masking of the RCS data is not severe, we will use a different
approach, which is much less sensitive to the geometry of
the survey.

We measure instead the ensemble-averaged tangential
shear as a function of radius around the sample of lenses
(‘‘ galaxy-galaxy lensing ’’ signal) and use these results to
derive hMapNi. We use the angular two-point correlation
function to estimate hN2i. The mass autocorrelation func-
tion hM2

api is derived from the observed ellipticity correla-
tion functions (Pen et al. 2002; van Waerbeke et al. 2002;
Hoekstra et al. 2002b). We show below how these observed
correlation functions, which do not require contiguous sur-
vey areas, can be easily related to the aperture mass correla-
tion functions.

We first consider the angular two-point correlation func-
tion !ð�Þ, which is related to the power spectrum through

!ð�Þ ¼ hDngð0ÞDngð�Þi ¼
b2

2�

Z
dw

pf ðwÞ
fKðwÞ

� �2

�
Z

dl lP3d
l

fKðwÞ
;w

� �
J0ðl�Þ ; ð18Þ

where J0ðxÞ is the zeroth-order Bessel function of the first
kind.We can define the effective (projected) power spectrum
of the angular correlation function P!ðlÞ as

P!ðlÞ ¼ b2
Z

dw
pf ðwÞ
fKðwÞ

� �2
P3d

l

fKðwÞ
;w

� �
: ð19Þ

Thus, we obtain for the angular correlation function

!ð�Þ ¼ 1

2�

Z
dl lP!ðlÞJ0ðl�Þ : ð20Þ

For the autocorrelation function of N, we have (see eqs.
[7] and [9])

hN2ið�Þ ¼ 2�

Z
dl lP!ðlÞ

12J4ðl�Þ
�ðl�Þ2

" #2

: ð21Þ

Schneider, van Waerbeke, & Mellier (2002) have shown
that it is rather straightforward to transform one correlation
function into another. Using the orthogonality of Bessel
functions, we obtain

P!ðlÞ ¼ 2�

Z
d# #!ð#ÞJ0ðl#Þ ; ð22Þ

which we can use to relate hN2ið�Þ to !ð�Þ. Doing so, we
obtain

hN2ið�Þ ¼
Z

d#
#

�2
!ð#ÞTþ

#

�

� �
; ð23Þ

where the function TþðxÞ is defined as (Schneider et al.
2002)

TþðxÞ ¼ 576

Z 1

0

dt

t3
J0ðxtÞ J4ðtÞ½ �2 : ð24Þ

Schneider et al. (2002) found an expression for TþðxÞ in
terms of elementary functions,

TþðxÞ ¼
6ð2� 15x2Þ

5
1� 2

�
arcsinðx=2Þ

� �

þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

100�
ð120þ 2320x2 � 754x4

þ 132x6 � 9x8Þ ; ð25Þ

for x � 2. TþðxÞ vanishes for x > 2. Therefore, the integral
in equation (19) extends only over 0 � # � 2�. Hence, we
need to measure the angular correlation function out to
twice the aperture size in order to compute hN2ið�Þ.

We now turn to the measurement of the galaxy-mass
cross-correlation function. In this case, the azimuthally
averaged tangential shear around the lens galaxies is a very
useful statistic (e.g., Fischer et al. 2000). To derive the gal-
axy-mass correlation function, we use the relation between
the average convergence ���ð�Þ inside a circular aperture of
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radius h and the mean tangential shear along the boundary
of the aperture

h�tið�Þ ¼ � 1

2

d ���ð�Þ
d ln �

: ð26Þ

The galaxy-mass correlation function is defined as
hDngð0Þ�tð�Þi ¼ h�tið�Þ and is related to the power spectrum
as

h�tið�Þ ¼
3�m

4�

H0

c

� �2

br

Z
dw

gðwÞpf ðwÞ
aðwÞfKðwÞ

�
Z

dl lP3d
l

fKðwÞ
;w

� �
J2ðl�Þ ð27Þ

(Kaiser 1992; Guzik & Seljak 2001), where J2ðxÞ is the sec-
ond-order Bessel function of the first kind. We assume that
the cross power spectrum is related to the matter power
spectrum by brP3dðkÞ. As discussed above, the assumption
of a constant value of b and r does not change the interpreta-
tion of our measurements.

We define the effective (projected) power spectrum for the
galaxy-mass correlation function P�ðlÞ as

P�ðlÞ ¼
3

2

H0

c

� �2

�mbr

�
Z

dw
gðwÞpf ðwÞ
aðwÞfKðwÞ

P3d
l

fKðwÞ
;w

� �
; ð28Þ

which gives

h�tið�Þ ¼
1

2�

Z
dl lP�ðlÞJ2ðl�Þ ð29Þ

and

hNMapið�Þ ¼ 2�

Z
dl lP�ðlÞ

12J4ðl�Þ
�ðl�Þ2

" #2

: ð30Þ

As before, we can express P�ðlÞ by an integral over the
galaxy-mass cross-correlation function, and we obtain

hNMapið�Þ ¼
Z

d#
#

�2
h�tið#ÞF

#

�

� �
; ð31Þ

where we define the function FðxÞ as

FðxÞ ¼ 576

Z 1

0

dt

t3
J2ðxtÞ J4ðtÞ½ �2 : ð32Þ

We did not find a simple expression for this function, but
it is well-behaved for 0 � x � 2 and vanishes for x > 2.
Hence, as before, the integral in equation (31) extends over
only 0 � # � 2�.

The mass autocorrelation function hM2
api can be obtained

by measuring the ellipticity correlation functions, which are
given by

	ttð�Þ ¼
PNs

i;j wiwj�t;iðxiÞ x �t;jðxjÞPNb

i;j wiwj

; ð33Þ

	rrð�Þ ¼
PNs

i;j wiwj�r;iðxiÞ x �r;jðxjÞPNb

i;j wiwj

; ð34Þ

where � ¼ jxi � xjj; �t and �r are the tangential and 45�

rotated shear in the frame defined by the line connecting the
pair of galaxies. For the following, it is more useful to
consider

	þð�Þ ¼ 	ttð�Þ þ 	rrð�Þ; 	�ð�Þ ¼ 	ttð�Þ � 	rrð�Þ ; ð35Þ

i.e., the sum and the difference of the two observed correla-
tion functions. As shown by Crittenden et al. (2002), one
can derive E- and B-mode correlation functions by integrat-
ing 	þð�Þ and 	�ð�Þ with an appropriate window function
(see Pen et al. 2002 for an application to the VIRMOS-DES-
CART data).

The E- and B-mode aperture masses are computed from
the ellipticity correlation functions using (Crittenden et al.
2002; Schneider et al. 2002)

hM2
apið�Þ ¼

1

2

Z
d# #

�2ap
	þð#ÞTþ

#

�ap

� �
þ 	�ð#ÞT�

#

�ap

� �� �

ð36Þ

and

hM2
?ið�Þ ¼

1

2

Z
d# #

�2ap
	þð#ÞTþ

#

�ap

� �
� 	�ð#ÞT�

#

�ap

� �� �
:

ð37Þ

The expression for TþðxÞ is given by equation (22),
whereas T�ðxÞ is given by

T�ðxÞ ¼
192

35�
x3 1� x2

4

� �7=2

ð38Þ

for x � 2 andT�ðxÞ vanishes for x > 2.
The B-mode aperture mass hM2

?i provides a quantitative
estimate of the systematics, since gravitational lensing only
produces an E mode. Residual systematics (e.g., imperfect
correction for the point-spread function anisotropy) or
intrinsic alignments will give rise to a Bmode. A similar test
exists for the galaxy-mass cross-correlation function: in the
absence of systematics, the average signal around the lenses
should vanish when the sources are rotated by 45�.

5. MEASUREMENTS

In this section, we present the measurements of the galaxy
autocorrelation and the galaxy-mass cross-correlation func-
tion hMapð�apÞNð�apÞi, which were obtained from the RCS
data. The mass autocorrelation function hM2

apð�apÞi was
measured by van Waerbeke et al. (2002) from the VIR-
MOS-DESCART survey.

As described in x4, we do not measure hN2i directly from
the data. Instead, we measure the angular correlation func-
tion !ð�Þ and use equation (23) to determine hN2i. To
measure !ð�Þ, we use the well-known estimator (Landy &
Szalay 1993)

!ð�Þ ¼ DD� 2DRþ RR

RR
; ð39Þ

where DD, DR, and RR are pair counts in bins of �þ �� of
the data-data, data-random, and random-random points,
respectively. For each patch, we create 24 mock catalogs by
placing the lens galaxies at random positions in the
unmasked regions of the data. We note our sample of lenses
is complete within the unmasked regions: the galaxies are
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sufficiently faint that they are not saturated, and they are
several magnitudes brighter than the detection limit. Fur-
thermore, the uncertainties in the photometry are small (less
than 3%; M. D. Gladders et al. 2002, in preparation) and do
not affect the measurement of the angular correlation func-
tion of the lens galaxies.

In order to determine the true angular correlation func-
tion, one needs to apply an integral constraint correction to
the observed correlation function. The determination of this
correction is not trivial and can introduce a significant
systematic uncertainty. However, since the integralR
dx xTþðxÞ vanishes, hN2i has the nice property of being

independent of the integral constraint correction. In addi-
tion, the measurements on different scales are only mildly
correlated.

Although we use the observed angular correlation func-
tion as an intermediate step in our analysis, it is useful to
compare the results to previous work. The observed angular
correlation function is well-approximated by a power law
with slope �0.7 and an amplitude !ð10Þ ¼ 0:115� 0:005.
Unfortunately, a direct comparison with the literature is dif-
ficult because of the different sample selection (magnitude
limits, filters). We can, however, make a crude comparison
with the results from Postman et al. (1998), who measured
the angular correlation function in the I band. The mean
RC-band magnitude of our sample is �20.5, which corre-
sponds to a mean I-band magnitude of �19.8 (based on the
colors of galaxies observed in the CNOC2 survey). Postman
et al. (1998) list a value of !ð10Þ ¼ 0:136� 0:021 for galaxies
with a median magnitude of I ¼ 19:6, which is in reasonable
agreement with our result.

We measured hN2i for each of the 10 RCS patches and
used the scatter in these measurements to estimate the error
bars on the galaxy autocorrelation function. The errors,
therefore, also include cosmic variance. The results, mea-
sured out to 1�, are presented in Figure 2a.

Figure 2b shows the cross-correlation function hMapNi
as measured from the RCS. To derive the cross-correlation
function, we measured the azimuthally averaged tangential
shear around the lens galaxies in bins of 100. We then used
equation (31) to relate the observed tangential shear profile
to hMapNi. As before, we measured the cross-correlation
for the 10 RCS patches and used the scatter in the measure-
ments to estimate the error bars.

The mass autocorrelation function hM2
api presented in

Figure 2c was taken from vanWaerbeke et al. (2002). It was
derived from the observed ellipticity correlation functions
(see eq. [36]). The largest scale measurement of hM2

api from
the VIRMOS-DESCART survey is 450. The error bars in
Figure 2c have been increased to account for the unknown
correction for the observed B mode (van Waerbeke et al.
2002).

The shapes and amplitudes of the correlation functions
presented in Figure 2 depend on the power spectrum. As dis-
cussed in x 3, we can remove the dependence on the power
spectrum by taking ratios of the correlation functions. Since
the various correlation functions probe the power spectrum
at the same redshift (see Fig. 1), we can take the ratios of
measurements at the same angular scale. If the surveys were
not well matched, we would have had to compare the meas-
urements at different angular scales in order to ensure that
we probe the power spectrum at the same physical scale. In
addition, one has to take into account the evolution of the
power spectrum in such a situation.

The observed ratio hMapNi=ðhN2ihM2
apiÞ1=2 as a func-

tion of aperture size is presented in Figure 3a. Figure 3b
gives the ratio of hM2

api and hN2i. The error bars on the
ratios correspond to the 68% confidence limits and have
been determined from a Monte Carlo simulation using the
uncertainties in the measurements of the observed correla-
tion functions (which were assumed to be Gaussian). For
reference, we have also indicated the effective physical scale
(�FWHM of the filter function) probed by the compen-
sated filterUð�Þ, corresponding to a redshift of z ¼ 0:35.

For reference, Figure 3 also shows the ratios for an
OCDM and a �CDM model in the case b ¼ 1 and r ¼ 1
(i.e., we have plotted �2

m � f1, and f2). These model values
are virtually constant with scale if b and r are constant. Also
note that the value for the cross-correlation is almost the
same for both cosmologies, whereas the ratio of the auto-
correlation functions differs by almost a factor of 2.

To examine possible systematic effects, we also computed
the results when the sources are rotated by 45�. This signal
should vanish in the case of lensing. The results of this
powerful test for the cross-correlation are presented in Fig-
ure 4 and are indeed consistent with no signal. The results
for the autocorrelation do show some residual systematics.
The amplitude of this signal is added to the error estimates
in Figure 3b as a conservative limit (van Waerbeke et al.
2002). We note that the amplitude of the B-mode signal is
small compared to the lensing (E-mode) signal. Based on
these results, we conclude that the accuracy of our measure-
ments (in particular, the galaxy-mass cross-correlation) is
not limited by systematics.

Fig. 2.— Measurements of (a) hN2i and (b) hNMapi as a function of
angular scale from the RCS data. The largest scale corresponds to an aper-
ture radius of 1�. (c) hM2

api as a function of angular scale from the VIR-
MOS-DESCART data (largest scale is 450). The error bars for hM2

api have
been increased to account for the unknown correction for the observed B
mode. For reference (they are not fitted to the measurements), we have also
plotted model predictions (for b ¼ 1 and r ¼ 1) for an OCDM cosmology
(dotted line: �m ¼ 0:3, �� ¼ 0, �8 ¼ 0:9, and � ¼ 0:21) and a �CDM cos-
mology (dashed line: �m ¼ 0:3, �� ¼ 0:7, �8 ¼ 0:9, and � ¼ 0:21). Note
that the points at different scales are slightly correlated.
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6. DISCUSSION

The results presented in Figure 3 suggest significant varia-
tion of both b and r with scale. We convert the observed
ratios into estimates for the bias parameters for the cur-
rently favored cosmological model ð�m ¼ 0:3; �� ¼ 0:7Þ
using equations (14) and (17).

Figure 5a shows the inferred value of the galaxy-mass
cross-correlation coefficient r as a function of scale. Because
of the small value of hM2

api at 10, the uncertainties in both b
and r are very large, and we have omitted this point.

We find that on small scales, the measurements are con-
sistent with a value r � 1. This good correlation between
mass and light on small scales (i.e., around galaxies) indi-
cates that (luminous) galaxies are surrounded by massive
halos. We note that with our definition, r can be larger than
1. On the largest scales, the results are consistent with r ¼ 1.
On scales � 1 h�1

50 Mpc, r is significantly lower than unity,
with a minimum value of r ¼ 0:57þ0:08

�0:07 (68% confidence).
Figure 5b shows that the scale dependence of b is very

similar to that of r (also see Fig. 6). We find that b is smaller
than unity on scales � 1 2 h�1

50 Mpc, with a minimum value
of b ¼ 0:71þ0:06

�0:05 (at 1:5 h�1
50 Mpc; 68% confidence). Hence,

the dark matter is more strongly clustered than the galaxies.
The variation of bwith scale is significant, but a better deter-
mination of hM2

api is needed to study the scale dependence
in more detail.

Our result is in good qualitative agreement with the find-
ings of Jenkins et al. (1998), who combined the observed

Automated Plate Measuring Facility (APM) two-point cor-
relation function and the matter correlation function
derived from numerical simulations. We note that a direct
comparison cannot be made with other measurements (such
as those from Jenkins et al. 1998), because the bias proper-
ties depend on galaxy type and redshift. For instance, obser-
vations show that the amplitude of the galaxy correlation
function depends on luminosity (Benoist et al. 1996; Nor-
berg et al. 2001).

Our results are derived for a specific subset of galaxies
and are redshift-averaged values (the lenses have a large
range in redshift, with intrinsically brighter galaxies at
higher redshifts). This is clearly demonstrated by equation
(A7). In the simple case in which the average bias parame-
ters change approximately linearly with redshift, our results
can be interpreted as a measurement of the biasing proper-
ties of L� galaxies at redshift �0.35. However, the redshift
dependence of the bias in magnitude-limited samples is usu-
ally more complex.

Hoekstra et al. (2001a) measured the ratio b=r on angular
scales out to 12<5 and found that the results were consistent
with a constant value. With the additional data (which
probe larger scales and give smaller error bars), we find evi-
dence for a small trend with scale. The measurements of the
current RCS data extend out to an angular scale of 1�

(which corresponds to a physical scale of 12:5 h�1
50 Mpc) and

are presented in Figure 6a. Figure 6 shows that even on a 1�

scale, the systematics are much smaller than the signal.
Hence, the value of b=r can be determined accurately. The

Fig. 4.—(a) Observed ratio hMXNi=ðhN2ihM2
apiÞ1=2 as a function of

aperture size. This corresponds to the results when the phase of the shear is
increased by �=2. If the signal presented in Figure 3a is caused by lensing, it
should vanish here, as it does. (b) Ratio of the B mode autocorrelation
hM2

X i and the galaxy autocorrelation hN2i as a function of aperture size.
The results suggest a residual B mode, which is attributed to systematics
(note that the points at different scales are somewhat correlated). The
amplitude of this signal is added to the error estimates in Figure 3b as a con-
servative limit. We note that the amplitude of the B mode signal is small
compared to the lensing (Emode) signal.

Fig. 3.—(a) Observed ratio hMapNi=ðhN2ihM2
apiÞ1=2 as a function of

aperture size. (b) Ratio of the mass autocorrelation hM2
api and the galaxy

autocorrelation hN2i as a function of aperture size. The measurements at
different scale are slightly correlated, and the error bars correspond to the
68% confidence intervals.Upper axis: Effective physical scale probed by the
compensated filter Uð�Þ at the median redshift of the lenses ðz ¼ 0:35Þ.
Dotted lines: Predictions of an OCDMmodel, whereas the dashed lines cor-
respond to the �CDMmodel for b ¼ 1, and r ¼ 1. In both cases, if b, and r
are constant with scale, we expect to observe ratios that are virtually con-
stant. The observed ratios show significant variation with scale, thus imply-
ing that both b and r vary.
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new data yield an average value of b=r ¼ 1:090� 0:035.
Limiting the measurements to the angular scales studied in
Hoekstra et al. (2001a), we find an average value of
b=r ¼ 1:05� 0:04, in excellent agreement with the previous
estimate of b=r ¼ 1:05þ0:12

�0:10.
Our measurements should be compared to models of gal-

axy formation. The two commonly used approaches are
hydrodynamic simulations (e.g., Blanton et al. 2000; Yoshi-
kawa et al. 2001) or semianalytical models (e.g., Kauffmann
et al. 1999a, 1999b; Somerville et al. 2001; Guzik & Seljak
2001). These studies suggest values of r close to unity.
Unfortunately, the mass resolution in these simulations,
such as the GIF results (Kauffmann et al. 1999a, 1999b) is
too poor: they only resolve massive, luminous galaxies. Our
sample of lenses contains many lower-luminosity systems,
which seriously hampers the comparison of our results with
predictions.

As the value of r is intimately linked to the details of gal-
axy formation, a careful comparison of the models with the
weak lensing measurements provides unique constraints. In

addition, planned large weak lensing surveys such as the
CFHT Legacy Survey9 will significantly improve the accu-
racy of the measurements, allowing larger scales to be
probed and enabling us to select galaxies based on colors or
luminosities (using photometric redshifts). Therefore, the
prospects of constraining biasing parameters from weak
lensing are excellent.
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‘‘Gravitational Lensing: New Constraints on Cosmology
and the Distribution of DarkMatter ’’ of the EC under con-
tract ERBFMRX-CT97-0172. Y. M. thanks CITA for hos-
pitality. It is a pleasure to thank Simon White, Peter
Schneider, and Francis Bernardeau for useful discussions.

APPENDIX

SCALE AND REDSHIFT-DEPENDENT BIAS PARAMETERS

As has been demonstrated in this paper, the bias relation is more complicated than the simple case of linear deterministic
biasing, and the inferred values of b and r vary with scale. In addition, these parameters are expected to vary with redshift.

In x 3, we treated both b and r as constants, which is not warranted by the data. In this appendix, however, we show that as
long as b and r vary slowly with scale, we can still infer the bias parameters as a function of scale directly. This procedure works
because the aperture mass statistic is effectively a passband filter.

Fig. 6.—(a) Value of b=r as a function of angular scale under the assump-
tion �m ¼ 0:3 and �� ¼ 0:7. These results are based on RCS data only,
which allows this ratio tomeasured out to 1� (which corresponds to a physi-
cal scale of 12:5 h�1

50 Mpc). Note that the points are slightly correlated. The
value of b=r is almost constant over the range probed here. For this cosmol-
ogy, we find an average value of b=r ¼ 1:090� 0:035, in excellent agree-
ment with the result from Hoekstra et al. (2001a). (b) Measurement of
hMXNi=hN2i (the signal when the phase of the shear is increased by �=2),
which should vanish if the results in (a) are caused by lensing.

9 Go to http://www.cfht.hawaii.edu/Science/CFHLS/.

Fig. 5.—(a) Measured value of the galaxy-mass cross correlation coeffi-
cient r as a function of scale for the �CDM cosmology. (b) Bias parameter
b as a function of scale. Upper axis: Effective physical scale probed by the
compensated filterUð�Þ at the median redshift of the lenses ðz ¼ 0:35Þ. The
error bars correspond to the 68% confidence intervals. Note that the meas-
urements at different scales are slightly correlated.
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If we assume that �gðkÞ ¼ bðkÞ�ðkÞ, we have to replace equation (5) with

Dngð�Þ ¼
Z

dw pf ðwÞb½ fKðwÞ�;w��½fKðwÞ�;w� ; ðA1Þ

which changes the galaxy autocorrelation function to

hN2ð�apÞi ¼ 2�

Z
dw

p2f ðwÞ
f 2KðwÞ

~PPfilterðw; �apÞ ; ðA2Þ

where

~PPfilterðw; �apÞ ¼
Z

dl l b2
l

fKðwÞ
;w

� �
P3d

l

fKðwÞ
;w

� �
J2ðl�apÞ : ðA3Þ

The filter J2ð�Þ is strongly peaked, and this motivates the approximation of J2 by a Dirac delta function (Bartelmann &
Schneider 1999),

J2ð�Þ 	 512

1155�3
�ð� � 693�=512Þ 	 1:43� 10�2�ð� � 4:25Þ : ðA4Þ

Consequently, ~PPfilter can be approximated as

~PPfilterðw; �apÞ 	 b2
4:25

�ap fKðwÞ
;w

� �
Pfilterðw; �apÞ ; ðA5Þ

where Pfilter is given by equation (9). For the ratio of the galaxy and matter autocorrelation functions, we can write

hM2
api

hN2i
	 9

4

H0

c

� �4

�2
m

R
dwh2ðw; �apÞR

dwh1ðw; �apÞb2f4:25=½�apfKðwÞ�;wg
ðA6Þ

or R
dwh1ðw; �apÞb2f4:25=½�apfKðwÞ�;wgR

dwh1ðw; �apÞ
¼ 9

4

H0

c

� �4

�2
m

R
dwh2ðw; �apÞR
dwh1ðw; �apÞ

hN2i
hM2

api
¼ f1 � �2

m � hN2i
hM2

api
ð�apÞ : ðA7Þ

The functions h1, and h2 are given by equations (8) and (12). The actual calculations show that f1 does not depend on the
power spectrum (vanWaerbeke 1998). The left-hand side of equation (A7) shows that we measure the bias parameter weighted
by the function h1.

A similar result can be obtained for the galaxy-mass cross-correlation coefficient r,R
dwh3ðw; �apÞrf4:25=½�ap fKðwÞ�;wgR

dwh3ðw; �apÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dwh1ðw; �apÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dwh2ðw; �apÞ

pR
dwh3ðw; �apÞ

� hMapNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2ihM2

api
q ¼ f2 �

hMapð�apÞNð�apÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2ð�apÞihM2

apð�apÞi
q :

ðA8Þ

The redshift distribution of the lenses pf ðwÞ is narrow (see Fig. 1). Hence, we measure the bias parameters over a small range
in redshift. Because fKðwÞ varies somewhat over this interval, we average values of b and r on different physical scales. How-
ever, if b and r vary slowly with scale and redshift, we can ignore the variation of these parameters over this range in scale.
Hence, equations (12) and (14) can be used to obtain direct measurements of the bias parameters as a function of scale.
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